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Resonant activation in the presence of nonequilibrated baths

Bartłomiej Dybiec* and Ewa Gudowska-Nowak†

Marian Smoluchowski Institute of Physics, Jagellonian University, Reymonta 4, 30-059 Krako´w, Poland
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We study the generic problem of the escape of a classical particle over a fluctuating barrier under the
influence of non-Gaussian noise mimicking the effects of nonequilibrated bath. The model system is described
by a Langevin equation with two independent noise sources, one of which stands for the dichotomous process
and the other describes external driving bya-stable noise. Our attention focuses on the effect of the structure
of stable noises on the mean escape time and on the phenomenon of resonant activation. Possible physical
interpretation of the occurrence of Le´vy noises and the relevance of the model for chemical kinetics is briefly
discussed.
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I. INTRODUCTION

In a classical Langevin approach the influence of the b
of surrounding molecules on a Brownian particle is d
scribed in terms of a mean-field, time dependent stocha
force which is commonly assumed to be white Gauss
noise. That postulate is compatible with the assumption
short correlation time of fluctuations, much shorter than
time-scale of the macroscopic motion and assumes that w
interactions with the bath lead to independent random va
tions of the parameter describing the motion. In more form
mathematical terms Gaussianity of the state-variable fluc
tions is a consequence of the central limit theorem wh
states that normalized sum of independent and identic
distributed random variables with finite variance converg
to the Gaussian probability distribution. If, however, aft
random collisions jump lengths are ruled by broad distrib
tions leading to the divergence of the second moment,
statistics of the process changes significantly. The existe
of the limiting distribution is then guaranteed by the gen
alized Lévy-Gnedenko@1# limit theorem. According to the
latter, normalized sums of independent, identically distr
uted random variables with infinite variance converge in d
tribution to the Lévy statistics. At the level of the Langevi
equation, Le´vy noises are generalization of the Brownia
motion and describe results of strong collisions between
test particle and the surrounding environment. In this se
they lead to different models of the bath that go beyon
standard ‘‘close-to-equilibrium’’ Gaussian description.

As documented elsewhere@2,3#, not fully thermalized
systems or systems driven away from the equilibrium c
manifest interesting physical properties. In particular, su
systems may exhibit large energy fluctuations with probab
ties higher than those predicted by the Gaussian statis
Nonequilibrated heat reservoir can be thus considered
source of non-Gaussian noises. Formalisms that give ph
cal background for this phenomena are based on the ide
nonextensive thermodynamics, established on a Tsallis st
tics @4#, and the fractional Fokker-Planck equation~FFPE!
@5#. The latter~FFPE! have been successfully applied@5–9#
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for describing anomalous diffusion processes, for which
non-local character brought about by the stable Le´vy noise
leads to the replacement of the local spatial derivatives in
diffusion term of the Fokker-Planck equation by a fraction
derivative.

In contrast to the fractional calculus, the Tsallis statist
approach to stable, Le´vy-type fluctuations is based on th
introduction of a special entropy form@4# from which exam-
ined thermodynamical quantities can be derived. The m
property of the Tsallis entropy is its nonextensivity, i.e., t
entropy of the system containing two noninteracting su
systems is different from the sum of the subsystems’ en
pies typical for equilibrium Gibssian ensembles and Gau
ian measures.

Without discussing the origin of non-Gaussian drivin
force and its relation to the nonequilibrium thermodynam
in a full extent, we rather focus here on the approach ba
on the generalized Langevin equation that incorpora
a-stable noises as additive forces acting on the system
interest. In fact, various examples of everyday life pheno
ena and a wide extent of experimental observations@2,10,11#
show existence of long-range correlations, disorder, coo
ativity, and deviations from the Gaussian statistics, thus s
gesting a strong need to study more general probability
tributions than just Gaussian ones. In particular,a-stable
distributions have been observed in anomalous dynamics
strange kinetics in amorphous semiconductors and gla
systems@8#. Lévy-flight models turn out to be adequate fo
the description of transport in heterogeneous catalysis, s
diffusion in micelle systems and analysis of geophysical d
@12–14#. Related models have been also applied in finan
modeling and analysis of economic time series@15#. Among
various aspects of the Le´vy-type variables and processes,
problem of special interest is numerical generation of sta
distributions and simulation ofa-stable integrals and sto
chastic differential equations@15–18#. As broadly discussed
in literature@16,18#, crucial difficulties in solving stochastic
differential equations with stable measures are caused by
noisy term, which allows for larger fluctuations with high
probabilities than Gaussian distributions. Numerical meth
@16# for such equations are more sophisticated than for
ferential equations@19# and for stochastic differential equa
tions with Gaussian noises@20#. In particular, the nonexist-
ence of variance for stable variables makes the prob
©2004 The American Physical Society05-1
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much more complicated to tackle both, numerically@16# and
analytically @21,22#. It turns out, however, that with the us
of suitable statistical estimation techniques, computer sim
lation procedures, and numerical discretization methods,
possible to construct relevant approximations of stocha
integrals with stable measures as integrators@16,17#.

In this paper we study statistical properties of the gene
system describing passage of a classical particle over a
tuating potential barrier. The system is coupled to a n
Gaussian bath modeled by the Le´vy stable noise. We presen
numerical results for the mean first passage time of the
ticle over the barrier, assuming a linear potential subjec
Markovian dichotomous fluctuations. Our model belongs
the class of ‘‘on-off’’ models discussed in a paper by Doeri
and Gadoua@23# and further analyzed by Bogun˜á et al. @24#.
A distinctive characteristics of this model is that part of t
time the barrier is either switched off~i.e., it becomes flat! or
the switching is performed between the barrier and a well
that the particle can essentially roll rather than climb dur
these times. The main difference between the model con
ered here is a form of driving, additive fluctuations. Where
in the previous papers mainly white Gaussian noises h
been considered@23,25–28#, here additive noises are a
sumed to bea-stable@17#, which might arise from the con
tact with nonequilibrated bath.

The problem of resonant activation~RA! @23# examined
in this paper is an example of processes manifesting c
structive role of noise@29#. The paper deals with a modifie
version of the model proposed by Doering and Gadoua@23#.
Sec. II presents the model and poses the problem to be s
ied. In Secs. III and IV general considerations of Le´vy noises
in physical systems are addressed and the problem of un
lying thermodynamic interpretation is briefly discussed. R
sults of simulations with a short note on numerical metho
applied for generating stable variables and integration of
chastic differential equations with stable measures are
cluded in Sec. V. The paper is closed with the conclud
remarks.

II. GENERIC MODEL SYSTEM

We consider an overdamped Brownian particle moving
a potential field between absorbing (x51) and reflecting
(x50) boundaries~cf. Fig. 1!, in the presence of noise tha
modulates the barrier height.

Time evolution of a state variablex(t) is described in
terms of the Langevin equation

dx

dt
52V8~x!1gh~ t !1z~ t !52V68 ~x!1z~ t !, ~1!

where prime means differentiation overx, z(t) is a white
Lévy process originating from the contact with nonequ
brated bath, andh(t) stands for a Markovian dichotomou
noise of intensityg taking one of two possible values61.
Autocorrelation of the dichotomous noise is set to^@h(t)
2^h&#@h(t8)2^h&#&5exp(22gut2t8u). For simplicity,
throughout the paper a particle mass, a friction coefficie
and the Boltzmann constant are all set to 1. The tim
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dependent potentialV6(x) is assumed to be linear with th
barrier switching between two configurations with an av
age rateg ~cf. Fig. 1!,

V6~x!5H6x, g5
H22H1

2
, ~2!

both z andh noises are assumed to be statistically indep
dent.

The initial condition for Eq.~1! is

x~0!50, ~3!

i.e., initially particle is located at the reflecting bounda
with equal choices of finding a potential barrier in (6) con-
figurations

P~H1 ,t50!5P~H2 ,t50!5 1
2 . ~4!

The quantity of interest is the mean first passage ti
~MFPT!, t

t5E
0

1

dxE
0

`

@p2~x,t !1p1~x,t !#dt, ~5!

i.e., the average time which particle spends in the sys
before it becomes absorbed. Within the proposed appro
the MFPT is estimated as a first moment of the distribut
of first passage times~FPT! obtained from the ensemble o
simulated realizations of the stochastic process in quest
Otherwise, for Le´vy flights described by Eq.~1!, the MFPT
may be calculated after solving a relevant determinis
FFPE@30# for the distribution function

]p6~x,t !

]t
5

]

]x F]V6~x!

]x
p6~x,t !G1D“

ap6~x,t !

1gp7~x,t !2gp6~x,t !. ~6!

FIG. 1. A model potential studied in the paper. The barr
height fluctuates dichotomously between the valuesH6 . A particle
starts its diffusive motion at a reflecting boundaryx50 and contin-
ues until the absorption atx51.
5-2
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RESONANT ACTIVATION IN THE PRESENCE OF . . . PHYSICAL REVIEW E 69, 016105 ~2004!
In the above FFPEp6(x,t) are probability density functions
~PDFs! for finding a particle at timet in the vicinity of x,
while potential takes the valueV6(x). The fractional deriva-
tives“a is understood in the sense of the Fourier transfo
@31#

“

a52E dk

2p
eikxukua, ~7!

with a52 corresponding to the standard Brownian diff
sion. The coefficientD denotes the generalized diffusion c
efficient with the dimension@30# @D#5cma sec21 and can
be related to the parameters characterizing the width of the
PDF ~see below!. In the approach presented herein, inste
of solving equation~6!, information on the MFPT is drawn
from the statistics of numerically generated trajectories
isfying the Langevin equation~1!. Before proceeding further
we remind shortly basic definitions and formalisms related
the a-stable statistics and noises.

III. LE´ VY-TYPE VARIABLES

Thea-stable variables are random variables for which
sum of random variables is distributed according to the sa
distribution as each variable, i.e.,

aX11bX25
d

cX1d, ~8!

where5
d

denotes equality in a distribution sense. Real c
stantsc, d in Eq. ~8! allow for rescaling and shifting of the
initial probability distribution.

The characteristic function of the probability distributio
that fulfills Eq. ~8! can be parametrized in various ways.
the usually chosenLa,b(z;s,m) @17,18# parametrization, a
characteristic function of the Le´vy-type variables is given by

f~k!5expF2saukuaS 12 ib sgn~k!tan
pa

2 D
1 imk2 ibksa tan

pa

2 G
for aÞ1,

f~k!5expF2sukuS 11 ib
2

p
sgn~k!lnuku D1 imkG ,

for a51, ~9!

with aP(0,2#, bP@21,1#, sP(0,̀ ), mP(2`,`), and
f(k) defined in Fourier space

f~k!5E dze2 ikzLa,b~z;s,m!. ~10!

Parametera is called the stability index,b describes skew-
ness of the distribution,s is responsible for its scaling andm
is a location parameter. The above parametrization~9! is con-
tinuous, in the sense that
01610
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sa@ ukua sgn~k!2k#tan
pa

2
52

2

p
sukusgn~k!lnuku

~11!

for everys andk.
Although the PDFs for stable variablesL(z) are known to

have an asymptotic power-law behaviorL(z);uzu2(a11),
analytical expressions corresponding to Eq.~9! can be given
only in few cases. In particular, fora52,b50, z is a Gauss-
ian variable with the probability density

L2,0~x;s,m!5
1

2sAp
expS 2

~x2m!2

4s2 D , ~12!

whereasa51,b50, anda5 1
2 , b51 yield Cauchy

L1,0~x;s,m!5
s

p

1

~x2m!21s2
~13!

and Lévy-Smirnoff (x.m)

L1/2,1~x;s,m!5S s

2p D 1/2

~x2m!23/2expS 2
s

2~x2m! D
~14!

distributions, respectively.
Generally, forb5m50 PDFs are symmetric and forb

561 andaP(0,1) they are totally skewed@17#.

IV. PHYSICAL INTERPRETATION

By definition, in the case of static barrier height (h
50), with the noisez uncorrelated at different times an
obeying the Le´vy statistics, the overdamped Langevin equ
tion ~1! describes Le´vy flights @30,31# in a constant force
field H0. For long times, the trajectoryx(t) behaves as

x~ t !'H0t1E
0

t

dsz~s! ~15!

and yields the Le´vy stable distribution@31# in the position of
the particle. In consequence, if the first moment exists,
for 1,a<2, mean value ofx(t) grows linearly with time,
^x(t)&5H0t, whereas the mean-square displacement
comes ^@x(t)2^x(t)&#2&52D52s2 only for a52 when
the finite second moment ofL(z) exists. Thus the general
ized Einstein relation connecting the first moment in t
presence of constant forceH0 to the second moment in th
absence of forcêx(t)&H0

5H0^x
2(t)&0 is recovered only in

the Brownian limita52 with the noise amplitudes related
to the diffusion coefficients5D1/2. Obviously, forz noises
with diverging mean-square displacement, the classical fl
tuation dissipation theorem is violated, and the Einstein
lation does not hold longer@9,31,33#.

When analyzed from the perspective of the continuo
time random walks~CTRW!, Lévy flights characterize walks
with a Poisson waiting time and a Le´vy distribution of the
jump length. The scaling nature of the jump length PD
leads then to a clustering of the Le´vy flights visible via in-
5-3
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terruption of the local motion by occasional long sojourns
all length scales@5#. This fractal character of the Le´vy flight
trajectory can be contrasted with subdiffusive CTRW@5,9#
that fills the two-dimensional space completely and featu
no clusters. In such a case, however, the time intervals
tween consecutive steps are governed by the power-law w
ing time distributions that lead to a sublinear depende
^x(t)&'tn with n denoting the power-law index of the wai
ing time PDF. Therefore, subdiffusive CTRW in a consta
external force acting along thex direction perfectly satisfies
the fluctuation-dissipation theorem@5,9# which holds also in
the corresponding fractional Fokker-Planck equation fram
work.

Diverging mean-square displacement cannot be valid f
particle with nondiverging mass. In fact, for massive p
ticles, a finite velocity of propagation exists making ve
long instantaneous jumps impossible. For that reason,
dilemma of diverging mean-square displacement in the L´vy
flight can be overcome by CTRW version of Le´vy walks
with a suitable time cost penalizing long jumps. Neverth
less, in many physical systems of interest diffusion of st
variablex(t) with diverging second moment does not viola
physical principles and is a legitimate way of physical mo
eling @12,13,34#. Therefore, not advocating further use
particular approach to the Le´vy-flight models in external
fields, we stick here to the direct integration of the gene
ized Langevin equation~1! with non-Gaussian fluctuating
forces.

V. STOCHASTIC DIFFERENTIAL EQUATIONS
WITH STABLE NOISES

A stochastic process with independent increments dist
uted according to thea-stable distribution is known as th
standard Le´vy motion. As a consequence of the characteris
distribution of increments, such a process is 1/a self-similar.
In order to investigate statistical properties of a motion
scribed by Eq.~1!, the model Langevin equation has be
simulated by use of the appropriate numerical methods.
sition of the particle is then obtained by direct integration
Eq. ~1!,

x~ t !52E
t0

t

@V8„x~s!…2gh~s!#ds1E
t0

t

dLa,b~s!

52E
t0

t

V68 „x~s!…ds1E
t0

t

dLa,b~s!. ~16!

In general@17,22#, the La,b measure in Eq.~16! can be ap-
proximated by

E
t0

t

f ~s!dLa,b~s!' (
i 50

N21

f ~ iDs!Ma,b„@ iDs,~ i 11!Ds!…

5
d

(
i 50

N21

f ~ iDs!Ds1/a§ i , ~17!
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where § i is distributed with the PDFLa,b(§;s,m50),
NDs5t2t0, and Ma,b„@ iDs,(i 11)Ds)… is the measure of
the interval†iDs,(i 11)Ds….

Random variables§ corresponding to the characterist
function ~9! can be generated using the Janicki-Weron al
rithm @16,18#. For aÞ1 their representation is

§5Da,b,s

sin@a~V1Ca,b!#

@cos~V!#1/a

3Fcos@V2a~V1Ca,b!#

W G (12a)/a

1Ba,b,s,m , ~18!

with constantsB,C,D given by

Ba,b,s,m5m2bsa tanS pa

2 D , ~19!

Ca,b5

arctanFb tanS pa

2 D G
a

, ~20!

Da,b,s5sH cosFarctanFb tanS pa

2 D G G J 21/a

. ~21!

For a51, § can be obtained from the formula

§5
2s

p F S p

2
1bVD tan~V!2b lnS p

2
Wcos~V!

p

2
1bV

D G
1B1,b,s,m , ~22!

with

B1,b,s,m5m1
2

p
bs ln~s!. ~23!

In the above equationsV and W are independent random
variables, such thatV is uniformly distributed in the interva
(2p/2,p/2) andW is exponentially distributed with a uni
mean@17,18#.

The problem described by Eq.~1! and corresponding Eq
~16! for the stability indexa52 is a well known case of
resonant activation resolved in the series of pap
@23,27,28#. Accordingly, fora52 integration in Eq.~16! is
performed with respect to a Gaussian measure and stan
numerical methods can be applied to solve the Lange
equation under study. Otherwise, the ordinary forward~or
backward! in time Fokker-Planck equation for the PDF ca
be derived in a closed form, from which the MFPT can
easily calculated. Also, for the Gaussian fluctuations theo
ical background is provided by the standard thermodynam
where parameters can be related to the intensity of th
thermal fluctuations imposed on a physical modex.

Within these studies, besides the driving Gaussian fluc
tions, two other kinds ofa-stable noises have been consi
ered, namely, the Cauchy noise (a51, b50) and the
Smirnoff noise (a50.5, b51) with intensitiess50.5, s
51/A2, ands51. The value of the location parameterm
has been arbitrary set to 0.
5-4
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FIG. 2. Thet(g) as a function of barrier fluctuation rateg for linear potentials withH158, H250 ~middle panel!; H158, H254
~upper panel!; H158, H2528 ~lower panel! are plotted along with asymptotic lines. The additive noise is of the Le´vy-Smirnoff type~left
panel! (a50.5, b51, m50) and of the Cauchy type~right panel! (a51, b50, m50), respectively. Different symbols correspond
varying intensity of fluctuations:s50.5 (1), s51/A2 (3), ands51 (*). Numerical results have been obtained by use of Eq.~16! with
the time stepdt51025. Noises were generated according to Eqs.~18! and ~22!. In order to gain sufficient statistics averaging of Eq.~16!
over 103 realizations has been performed. Asymptotic lines have been evaluated for reference static potential profiles with the
dt51025 and averaged over 104 realizations. Error bars have been estimated by use of standard techniques for the Monte Carlo data
@36#. They represent standard deviation from the mean. Lines have been drawn to guide the eye.
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The choice ofs, which scales the distribution width an
varies the intensity of fluctuations, corresponds, although
in a self-transparent way, to the change of system temp
ture. However, the problem of definition of the system te
perature is more subtle here than in the presence of a s
dard bath@4,32,35# because the system is not in the state
equilibrium.

Lévy-type variables have been generated by use of rec
given by Eqs.~18! and ~22!. The trajectoryx(t) has been
generated according to Eq.~16! for various noise realiza
tions. Its evaluation proceeded till the timet8 when x(t8)
>1 for the first time. The resulting distribution of FPT ha
been further used to evaluate MFPT.

The linear potentialV65H6x has been dichotomousl
alternating between different values ofH6 . Our simulations
have been obtained forH6568 @cf. Fig. 2 ~lower panel!#,
H250, H158 @cf. Fig. 2 ~middle panel!# and H254,
H158 @cf. Fig. 2 ~upper panel!#.

Asymptotic lines plotted in Fig. 2 have been calculat
numerically by use of the Monte Carlo method@36#. As ex-
pected, typical behavior@23,24,27# has been recovered fo
g→0

t~g→0!5
1

2
@t~H2!1t~H1!#, ~24!

and forg→`
01610
ot
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t~g→`!5tS 1

2
~H21H1! D . ~25!

Figure 2 presents results of simulations averaged over3

realizations with a time stepDt51025. For calculation of
the asymptotic lines@Eqs.~24! and ~25!# Dt51025 and av-
eraging over 104 realizations has been performed.

For the barrier switching betweenH6568, the phenom-
enon of resonant activation is clearly visible cf. Fig. 2~lower
panel!. By comparison to the results obtained for a motion
a particle subject to the additive white Gaussian noise@23–
27#, the value of the MFPT is smaller and resonant activat
is observed at lower frequenciesg. Moreover, for H65
68, asymptotic values of MFPT estimated forg→` and
g→0 are higher~lower! than in the corresponding whit
Gaussian-noise case@23,24,27#.

For other cases under consideration, i.e., forH250,
H158 andH254, H158, the resonant activation has n
been observed@cf. Fig. 2 ~middle and upper panel!#. How-
ever, values of reported MFPTs for the system driven
non-Gaussian Le´vy noises are always significantly smalle
than in the case of Gaussian-noise driving. It is caused by
fact that the Cauchy and Le´vy-Smirnoff noises allow for
higher values of driving fluctuations in the Langevin equ
tion ~1!.

As it can be inferred from Fig. 2, values of the MFPT f
the Cauchy noise are higher than the corresponding times
the Lévy-Smirnoff noise, compare the left and the right pan
5-5
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B. DYBIEC AND E. GUDOWSKA-NOWAK PHYSICAL REVIEW E69, 016105 ~2004!
of Fig. 2. This observation can be explained by the differe
between both statistics: for the given sets of parameters
Lévy-Smirnoff distribution is more ‘‘heavily tailed’’ than the
Cauchy distribution.

The procedure applied for numerical integration of E
~16! is valid for every allowed value ofa. In particular, the
case witha52 has been investigated along these lines
order to test the numerical approach adopted in simulatio
Eq. ~1!. The test concluded a perfect agreement of num
cally simulated results with formerly solved Gaussian ca
of RA @23,26–28#.

VI. SUMMARY

We have considered a thermally activated process
occurs in a system coupled to a non-Gaussian noise so
introduced by a nonequilibrated thermal bath. Another ex
nal stochastic process is assumed to be responsible fo
chotomous fluctuations of the potential barrier which h
been modeled by the linear function with a varying slope

In comparison to the Gaussian case@28#, when the RA
phenomenon has been observed for all barrier setupsH6

568, H158, H250, H158, H254) analyzed in this
study, non-Gaussian additive stable noises produce reso
activation observable only for theH6568 case. Resulting
MFPTs are significantly smaller than those obtained for
Gaussian source of fluctuations. The effect is due to hig
probabilities of the extreme events~large fluctuations! al-
lowed by the Le´vy statistics. Similarly to the Gaussian-ba
case, a typical asymptotic behavior of the MFPT has b
recovered for large and small frequencies of the dichotom
noise: for smallg MFPT tends to the average MFPTs for th
both barrier configurations, while for largeg it becomes
equal to the MFPT over the average potential bar
@23,25,26#.

These observations have several implications in rela
to chemical kinetics in conformationally varying media@38–
40# where flipping barriers separating reactants’ and pr
ucts’ basins may be due to a dynamic isomerization of
activated complex. The effects of fluctuations in force
potential on the diffusive process have been also extensi
studied in the context of motor proteins@41#. Under typical
conditions, i.e., with a Gaussian additive thermal noise
with a flipping barrier height, the RA phenomenon is reg
tered in all those realms as a maximal flux of particles o
maximum reaction rate. In contrary to this finding, the ana
gous systems influenced by the presence of non-Gaus
additive noises exhibit RA only for potentials switching b
tween the barrier and the well~Fig. 2, lower panel!. Other-
wise, the kinetics seems to be fairly insensitive to the fl
ping rate of an erecting barrier~Fig. 2, middle panel! or
becomes slowed down~Fig. 2, upper panel! when the fre-
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quency of switching between a high and a low barrier b
comes large. We should mention here that so far, our num
cal results concerned only special choices ofa, b
parameters that define thea-stable distributions. Therefore
it cannot be excluded that for other (a,b) sets in thea, b
space, the RA phenomenon would be observable for all
rier setups. In fact, preliminary studies@42# suggest that the
phenomenon can be reinstalled for fully asymmetric noi
with low a values.

In addition, physical interpretation of the Le´vy noisy term
in Eq. ~1! is brought sometimes with a relevance to the no
extensive thermodynamics and the Tsallis statis
@4,5,30,31,35#. In general, however, descriptions provided
the FFPE approach and the Tsallis statistics are not in a
agreement@5,30,31#. Nevertheless, the formalism of none
tensive statistical mechanics~or the ‘‘superstatistics’’ con-
cept, in general, Ref.@35#! offers an intriguing interpretation
of non-Gibssian ensembles that can model nonequilibra
baths. Especially, for nonquilibrium systems composed
regions that exhibit spatiotemporal fluctuations of an inte
sive quantity~such as pressure, chemical potential, inve
temperature, or the energy dissipation rate@35#! generalized
statistics may emerge in consequence of a statistical su
dination of the intensive variable to those fluctuations.

The situation in which resulting probability distribution
are not Gaussian are frequent in various physical situatio
The phenomena of special interest are random walks
may lead to Le´vy distributions@5# and hence provide a pos
sible realization of Le´vy noise sources.

There are several candidates for such a noise origin to
taken into account. Obviously, all noise sources need to
infinite to allow, with a nonzero probability, infinite fluctua
tions. Among possible models of chaotic nonequilibriu
baths perhaps the most natural is a model of the fluid
bath @37# abruptly perturbed with a local heating to a ve
high temperature. Gradual spreading of energy progre
until a new equilibrium state is reached and for some fin
periods of time, the probing system that experiences lo
change of the bath temperature will be governed by n
Boltzmann statistics@32,37#. This and similar approache
validate then use of the Le´vy-type statistics for description o
systems functioning far from equilibrium or subject to no
equilibrated baths. As known from other similar studies@22#,
the Lévy-type structure of the noise imposed on a doub
well potential can affect profoundly noise induced jumpi
between metastable states and result in stationary PDF d
ating severely from the usual Gibbs distribution.
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