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Resonant activation in the presence of nonequilibrated baths
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We study the generic problem of the escape of a classical particle over a fluctuating barrier under the
influence of non-Gaussian noise mimicking the effects of nonequilibrated bath. The model system is described
by a Langevin equation with two independent noise sources, one of which stands for the dichotomous process
and the other describes external driving d»¥stable noise. Our attention focuses on the effect of the structure
of stable noises on the mean escape time and on the phenomenon of resonant activation. Possible physical
interpretation of the occurrence of e noises and the relevance of the model for chemical kinetics is briefly
discussed.
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[. INTRODUCTION for describing anomalous diffusion processes, for which the
non-local character brought about by the stableylaoise
In a classical Langevin approach the influence of the batleads to the replacement of the local spatial derivatives in the
of surrounding molecules on a Brownian particle is de-diffusion term of the Fokker-Planck equation by a fractional
scribed in terms of a mean-field, time dependent stochastiderivative.
force which is commonly assumed to be white Gaussian In contrast to the fractional calculus, the Tsallis statistics
noise. That postulate is compatible with the assumption of approach to stable, Mg-type fluctuations is based on the
short correlation time of fluctuations, much shorter than thentroduction of a special entropy forfd] from which exam-
time-scale of the macroscopic motion and assumes that weaked thermodynamical quantities can be derived. The main
interactions with the bath lead to independent random variaproperty of the Tsallis entropy is its nonextensivity, i.e., the
tions of the parameter describing the motion. In more formalentropy of the system containing two noninteracting sub-
mathematical terms Gaussianity of the state-variable fluctussystems is different from the sum of the subsystems’ entro-
tions is a consequence of the central limit theorem whiclpies typical for equilibrium Gibssian ensembles and Gauss-
states that normalized sum of independent and identicallian measures.
distributed random variables with finite variance converges Without discussing the origin of non-Gaussian driving
to the Gaussian probability distribution. If, however, afterforce and its relation to the nonequilibrium thermodynamics
random collisions jump lengths are ruled by broad distribu-in a full extent, we rather focus here on the approach based
tions leading to the divergence of the second moment, then the generalized Langevin equation that incorporates
statistics of the process changes significantly. The existence-stable noises as additive forces acting on the system of
of the limiting distribution is then guaranteed by the gener-interest. In fact, various examples of everyday life phenom-
alized Lery-Gnedenko[1] limit theorem. According to the ena and a wide extent of experimental observatj@nk0,11]
latter, normalized sums of independent, identically distrib-show existence of long-range correlations, disorder, cooper-
uted random variables with infinite variance converge in dis-ativity, and deviations from the Gaussian statistics, thus sug-
tribution to the Lery statistics. At the level of the Langevin gesting a strong need to study more general probability dis-
equation, Ley noises are generalization of the Brownian tributions than just Gaussian ones. In particularstable
motion and describe results of strong collisions between thdistributions have been observed in anomalous dynamics and
test particle and the surrounding environment. In this sensestrange kinetics in amorphous semiconductors and glassy
they lead to different models of the bath that go beyond aystemq8]. Levy-flight models turn out to be adequate for
standard “close-to-equilibrium” Gaussian description. the description of transport in heterogeneous catalysis, self-
As documented elsewher@,3], not fully thermalized diffusion in micelle systems and analysis of geophysical data
systems or systems driven away from the equilibrium carj12—-14. Related models have been also applied in financial
manifest interesting physical properties. In particular, suchmodeling and analysis of economic time seffi&S]. Among
systems may exhibit large energy fluctuations with probabili-various aspects of the kg-type variables and processes, a
ties higher than those predicted by the Gaussian statisticeroblem of special interest is numerical generation of stable
Nonequilibrated heat reservoir can be thus considered asdistributions and simulation of-stable integrals and sto-
source of non-Gaussian noises. Formalisms that give physehastic differential equatiorf45-18. As broadly discussed
cal background for this phenomena are based on the idea of literature[ 16,18, crucial difficulties in solving stochastic
nonextensive thermodynamics, established on a Tsallis statiglifferential equations with stable measures are caused by the
tics [4], and the fractional Fokker-Planck equati@fFPB noisy term, which allows for larger fluctuations with higher
[5]. The latter(FFPB have been successfully appligg-9) probabilities than Gaussian distributions. Numerical methods
[16] for such equations are more sophisticated than for dif-
ferential equation$19] and for stochastic differential equa-
*Electronic address: bartek@th.if.uj.edu.pl tions with Gaussian noisg®0]. In particular, the nonexist-
TElectronic address: gudowska@th.if.uj.edu.pl ence of variance for stable variables makes the problem
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much more complicated to tackle both, numericfllg] and A
analytically[21,22. It turns out, however, that with the use %
of suitable statistical estimation techniques, computer simu- 5
lation procedures, and numerical discretization methods, it isH+T
possible to construct relevant approximations of stochastic ) :
integrals with stable measures as integraf@617). Y
In this paper we study statistical properties of the generic f
system describing passage of a classical particle over a fluc
tuating potential barrier. The system is coupled to a non-
Gaussian bath modeled by théuvyestable noise. We present g_1
numerical results for the mean first passage time of the par
ticle over the barrier, assuming a linear potential subject to
Markovian dichotomous fluctuations. Our model belongs to
the class of “on-off” models discussed in a paper by Doering

1
0
L

and Gadou#$23] and further analyzed by Bogat al.[24]. x=0 o =
A distinctive characteristics of this model is that part of the
time the barrier is either switched dffe., it becomes flator FIG. 1. A model potential studied in the paper. The barrier

the switching is performed between the barrier and a well, sbeight fluctuates dichotomously between the valdes A particle
that the particle can essentially roll rather than climb duringstarts its diffusive motion at a reflecting boundary 0 and contin-
these times. The main difference between the model considtes until the absorption at=1.
ered here is a form of driving, additive fluctuations. Whereas
in the previous papers mainly white Gaussian noises havéependent potentidf . (x) is assumed to be linear with the
been considered23,25-28, here additive noises are as- barrier switching between two configurations with an aver-
sumed to bex-stable[17], which might arise from the con- age ratey (cf. Fig. 1),
tact with nonequilibrated bath.

The problem of resonant activatigRA) [23] examined
in this paper is an example of processes manifesting con-
structive role of nois¢29]. The paper deals with a modified
version of the model proposed by Doering and Gad@3.  both ¢ and 7 noises are assumed to be statistically indepen-
Sec. Il presents the model and poses the problem to be student.

H_—H,
Vi(X)=H.x, 9=——> (2

ied. In Secs. Ill and IV general considerations of&oises The initial condition for Eq(1) is
in physical systems are addressed and the problem of under-
lying thermodynamic interpretation is briefly discussed. Re- x(0)=0, 3

sults of simulations with a short note on numerical methods
applied for generating stable variables and integration of stok.e., initially particle is located at the reflecting boundary
chastic differential equations with stable measures are inwith equal choices of finding a potential barrier itt ) con-
cluded in Sec. V. The paper is closed with the concludingfigurations
remarks.
P(H, ,t=0)=P(H_,t=0)=3. (4)
Il. GENERIC MODEL SYSTEM

The quantity of interest is the mean first passage time
We consider an overdamped Brownian particle moving inMFPT), =

a potential field between absorbing=1) and reflecting

(x=0) boundariegcf. Fig. 1), in the presence of noise that 1 %

modulates the barrier height. T= fo dxfo [p-(x,t) +p(x,t)]dt, 5
Time evolution of a state variable(t) is described in

terms of the Langevin equation i.e., the average time which particle spends in the system

dx before it becomes absorbed. Within the proposed approach,
—=—V'(X)+gpt)+L(t)=—-V.(x)+(t), (1) the MFPT is estimated as a first moment of the distribution
dt - of first passage time@PT) obtained from the ensemble of
simulated realizations of the stochastic process in question.
where prime means differentiation over {(t) is a white  Otherwise, for Ley flights described by Eq1), the MFPT
Levy process originating from the contact with nonequili- may be calculated after solving a relevant deterministic
brated bath, andy(t) stands for a Markovian dichotomous FFPE[30] for the distribution function

noise of intensityg taking one of two possible values1.

Autocorrelation of the dichotomous noise is set(foy(t) Ip=(X,t) 9 |IV(X)

(M) —{n)])=exp(=2yt—t’]). For simplicity, x| ax  P=(xD|+DVIpL(X,1)
throughout the paper a particle mass, a friction coefficient,

and the Boltzmann constant are all set to 1. The time- +yp=(Xt) —yp+(X,1). (6)
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In the above FFPP-.(x,t) are probability density functions Ta 2

(PDF9 for finding a particle at time in the vicinity of x, lim o[ k| sgnk) —kJtan—-=— ;a|k|sgr(k)|n|k|
while potential takes the vallé.. (x). The fractional deriva- a1l

tives V¢ is understood in the sense of the Fourier transform (11)

[31] for everyo andk.
N dK i 1w Although the PDFs for stable variable$¢() are known to
Vi=- f o€ [k, (7) " have an asymptotic power-law behavib(Z)~|¢ =@+,
analytical expressions corresponding to Egj.can be given
with =2 corresponding to the standard Brownian diffu- only in few cases. In particular, far=2,6=0, { is a Gauss-
sion. The coefficienD denotes the generalized diffusion co- ian variable with the probability density
efficient with the dimensiofi30] [D]=cm® sec ! and can

be related to the parametercharacterizing the width of the L, (X0 p0) = exdl — (X—u)? (12)
PDF (see below. In the approach presented herein, instead 2050, 207 402 |’
of solving equation6), information on the MFPT is drawn
from the statistics of numerically generated trajectories satwherease=1,8=0, anda=3, B8=1 yield Cauchy
isfying the Langevin equatiofl). Before proceeding further,
we remind shortly basic definitions and formalisms related to _ o 1
the a-stable statistics and noises. Lidxiou)=— (X— )2+ 02 (13
Ill. LE VY-TYPE VARIABLES and Levy-Smirnoff (x> u)
The a-stable variables are random variables for which the o\ 12 a o
sum of random variables is distributed according to the same Lizi(Xio.u)=|5—] (X—u) “7exp — 20— )
distribution as each variable, i.e.,
(14
ax,+ bxzi cX+d (8) distributions, respectively.
’ Generally, forB8=u=0 PDFs are symmetric and f@
d ==*1 anda e(0,1) they are totally skeweld 7].

where= denotes equality in a distribution sense. Real con-
stantsc, d in Eq.(8) allow for rescaling and shifting of the
initial probability distribution.

The characteristic function of the probability distribution By definition, in the case of static barrier height (
that fulfills Eq. (8) can be parametrized in various ways. In =0), with the noise/ uncorrelated at different times and
the usually choset , z({;0, 1) [17,18 parametrization, a obeying the Lgy statistics, the overdamped Langevin equa-
characteristic function of the lg-type variables is given by tion (1) describes Ley flights [30,31 in a constant force
field Hy. For long times, the trajectory(t) behaves as

IV. PHYSICAL INTERPRETATION

¢(k)=exr{—o“|k|“(1—iﬁ sgr(k)tan%) :
x(t)%H0t+f0ds§(s) (15

. . Wa
+iuk—iBko® tan7}

and yields the [ey stable distributiod31] in the position of
the particle. In consequence, if the first moment exists, i.e.,
for a#1, for 1<a<2, mean value ok(t) grows linearly with time,
(x(t))=Hot, whereas the mean-square displacement be-

2 . comes {[x(t) —(x(t))]*)=2D =202 only for =2 when
¢(k):eXF{_‘T|k|( 1+ig— sgr{k)ln|k|) +'Mk}= the finite second moment @f(¢) exists. Thus the general-
ized Einstein relation connecting the first moment in the
for a=1, (9) presence of constant for¢¢, to the second moment in the

absence of forcex(t))y = Ho(X3(t))g is recovered only in

with @€ (0,2], Be[—1,1, oce(0>®), we(—x,»), and the Brownian limita=2 with the noise amplitude related
¢(k) defined in Fourier space to the diffusion coefficient-=D2. Obviously, for{ noises
with diverging mean-square displacement, the classical fluc-
4 . tuation dissipation theorem is violated, and the Einstein re-
¢(k):f dge "L, p(Lo ). 10 |ation does not hold longd®,31,33.
When analyzed from the perspective of the continuous
Parametew is called the stability indexg3 describes skew- time random walk§CTRW), Levy flights characterize walks
ness of the distributiony is responsible for its scaling and ~ with a Poisson waiting time and a s distribution of the
is a location parameter. The above parametriza®is con-  jump length. The scaling nature of the jump length PDF
tinuous, in the sense that leads then to a clustering of the \yeflights visible via in-
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terruption of the local motion by occasional long sojourns onwhere s; is distributed with the PDFL, s(s;o,u=0),

all length scale$5]. This fractal character of the'lg flight ~ NAs=t—t,;, andM, g([iAs,(i+1)As)) is the measure of
trajectory can be contrasted with subdiffusive CTRBY9]  the intervaliAs, (i +1)As).

that fills the two-dimensional space completely and features Random variables corresponding to the characteristic
no clusters. In such a case, however, the time intervals bdunction (9) can be generated using the Janicki-Weron algo-
tween consecutive steps are governed by the power-law waitithm [16,18. For a#1 their representation is

ing time distributions that lead to a sublinear dependence .
(x(t))~t” with v denoting the power-law index of the wait- s=D, 4 Uw
ing time PDF. Therefore, subdiffusive CTRW in a constant 77 Teog V)M
external force acting along thedirection perfectly satisfies _ 1-a)a
the fluctuation-dissipation theoref,9] which holds also in cogVv a(V+C“'ﬂ)]}( : +Bagoy, (18
the corresponding fractional Fokker-Planck equation frame- w o
work. _ , with constants8,C,D given by

Diverging mean-square displacement cannot be valid for a
particle with nondiverging mass. In fact, for massive par- N Ta
ticles, a finite velocity of propagation exists making very Bagou=H— B0 tar(T), (19
long instantaneous jumps impossible. For that reason, the
dilemma of diverging mean-square displacement in theyLe Ta
flight can be overcome by CTRW version of \ye walks arcta+,8tar<7)
with a suitable time cost penalizing long jumps. Neverthe- Cup= - , (20)
less, in many physical systems of interest diffusion of state
variablex(t) with diverging second moment does not violate Ta —1a
physical principles and is a legitimate way of physical mod- DQ,B,U=U{CO{ arcta+,8tar( 7) ] . (21
eling [12,13,34. Therefore, not advocating further use of
particular approach to the “kg-flight models in external For =1, s can be obtained from the formula
fields, we stick here to the direct integration of the general- -
ized Langevin equatiorfl) with non-Gaussian fluctuating ) EWCOS(V)
forces. == (g+ BV |tanV)— BIn

5BV
V. STOCHASTIC DIFFERENTIAL EQUATIONS
WITH STABLE NOISES +B1 g (22)

A stochastic process with independent increments distribyith
uted acco}rding to the-stable distribution is known as the 2
standard Ley motion. As a consequence of the characteristic Bigou=mt —Boin(o). (23
distribution of increments, such a process is $£lf-similar. m
In order to investigate statistical properties of a motion dedn the above equation¥ and W are independent random
scribed by Eq.(1), the model Langevin equation has beenVvariables, such thaf is uniformly distributed in the interval
simulated by use of the appropriate numerical methods. Pd-— 7/2,m/2) andW is exponentially distributed with a unit
sition of the particle is then obtained by direct integration ofmean[17,18|.
Eq. (1), The problem described by E¢l) and corresponding Eqg.
(16) for the stability indexa=2 is a well known case of
t t resonant activation resolved in the series of papers
X(t):—f [V’(x(s))—gn(s)]ds+J' dL, g(s) [23,27,28. Accordingly, fora=2 integration in Eq(16) is
to to - -
performed with respect to a Gaussian measure and standard
to t numerical methods can be applied to solve the Langevin
:_ft V:(X(S))dSJfft dL, g(s). (16)  equation under study. Otherwise, the ordinary forwéod
0 0 backward in time Fokker-Planck equation for the PDF can
be derived in a closed form, from which the MFPT can be
In general[17,22, theL, ; measure in Eq(16) can be ap- easily calculated. Also, for the Gaussian fluctuations theoret-
proximated by ical background is provided by the standard thermodynamics
where parametetr can be related to the intensity of the
. N-1 thermal fluctuations imposed on a physical made
J f(s)dL, 4(s)~ E f(iAs)M, g([iAs,(i+1)As)) Within these studies, besides the driving Gaussian fluctua-
to =0 tions, two other kinds ofx-stable noises have been consid-
ered, namely, the Cauchy noisexr€1, B=0) and the
GN-1 Smirnoff noise @=0.5, B=1) with intensitiesc=0.5, o
=3 f(iAs)Astag,, (17) =1/\2, ando=1. The value of the location parameter
i=0 has been arbitrary set to 0.
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FIG. 2. Ther(y) as a function of barrier fluctuation ratefor linear potentials wittH , =8, H_=0 (middle panel H, =8, H_=4
(upper panel H, =8, H_=—8 (lower panel are plotted along with asymptotic lines. The additive noise is of theg/iSmirnoff type(left
pane) (¢=0.5, B=1, u=0) and of the Cauchy typg&ight pane] (a=1, B=0, u=0), respectively. Different symbols correspond to
varying intensity of fluctuationsr=0.5 (+), o=1/4/2 (X), ando=1 (*). Numerical results have been obtained by use of @6) with
the time stedt=10"5. Noises were generated according to E4®) and(22). In order to gain sufficient statistics averaging of Etp)
over 1@ realizations has been performed. Asymptotic lines have been evaluated for reference static potential profiles with the time step
dt=10 "% and averaged over 1@ealizations. Error bars have been estimated by use of standard techniques for the Monte Carlo data analysis
[36]. They represent standard deviation from the mean. Lines have been drawn to guide the eye.

The choice ofo, which scales the distribution width and 1
varies the intensity of fluctuations, corresponds, although not T(y—°)= T( 5(H-+H +)) : (25)
in a self-transparent way, to the change of system tempera-
ture. However, the problem of definition of the system tem-Figure 2 presents results of simulations averaged ovér 10
perature is more subtle here than in the presence of a stapealizations with a time stept=10"°. For calculation of
darq_batf{4,32,33 because the system is not in the state ofihe asymptotic line§Egs. (24) and (25)] At=10"5 and av-
equilibrium. eraging over 19realizations has been performed.

. Levy-type variables have been ge-nerated by use of recipes Fqr the barrier switching betweét, = +8, the phenom-
given by Egs.(18) and (22). The trajectoryx(t) has been enon of resonant activation is clearly visible cf. Figl@ver
generated according to E¢16) for various noise realiza- panej. By comparison to the results obtained for a motion of
tions. Its evaluation proceeded till the tinte whenx(t') 3 particle subject to the additive white Gaussian no23>-
=1 for the first time. The resulting distribution of FPT has 27), the value of the MFPT is smaller and resonant activation
been further used to evaluate MFPT. is observed at lower frequencies Moreover, forH. =

The linear potentiaV.=H_.x has been dichotomously +g  asymptotic values of MFPT estimated fgr->c and
alternating between different valuestdaf. . Our simulations y—0 are higher(lowen than in the corresponding white
have been obtained fdi . = =8 [cf. Fig. 2 (lower panel],  Gaussian-noise ca$@3,24,27.

H_=0, H,=8 [cf. Fig. 2 (middle panel] and H_=4, For other cases under consideration, i.e., Fbr =0,

H, =8 [cf. Fig. 2 (upper panel. H,=8 andH_=4, H, =8, the resonant activation has not
Asymptotic lines plotted in Flg 2 have been CalCUlatedbeen observetk:f_ F|g 2 (m|dd|e and upper panﬂ] How-
numerically by use of the Monte Carlo methf26]. As ex-  ever, values of reported MFPTs for the system driven by
pected, typical behavidi23,24,27 has been recovered for non-Gaussian L noises are always significantly smaller
y—0 than in the case of Gaussian-noise driving. It is caused by the

fact that the Cauchy and kg-Smirnoff noises allow for
1 higher values of driving fluctuations in the Langevin equa-
7(y—=0)=3[r(H_)+7(H.)], 24 tion (1).
As it can be inferred from Fig. 2, values of the MFPT for
the Cauchy noise are higher than the corresponding times for
and for y— o the Levy-Smirnoff noise, compare the left and the right panel
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of Fig. 2. This observation can be explained by the differencejuency of switching between a high and a low barrier be-
between both statistics: for the given sets of parameters, theomes large. We should mention here that so far, our numeri-
Lévy-Smirnoff distribution is more “heavily tailed” than the cal results concerned only special choices of B
Cauchy distribution. parameters that define thestable distributions. Therefore,
The procedure applied for numerical integration of Eq.it cannot be excluded that for othet (8) sets in thea, 8
(16) is valid for every allowed value o&. In particular, the space, the RA phenomenon would be observable for all bar-
case witha=2 has been investigated along these lines irrier setups. In fact, preliminary studig42] suggest that the
order to test the numerical approach adopted in simulation gbhenomenon can be reinstalled for fully asymmetric noises
Eqg. (1). The test concluded a perfect agreement of numeriwith low « values.
cally simulated results with formerly solved Gaussian cases In addition, physical interpretation of the \ygnoisy term
of RA[23,26-2§. in EqQ. (1) is brought sometimes with a relevance to the non-
extensive thermodynamics and the Tsallis statistics
VI. SUMMARY [4,5,30,31,3% In general, however, descriptions provided by

) . the FFPE approach and the Tsallis statistics are not in a full
We have considered a thermally activated process tha{greemenfs,30,31. Nevertheless, the formalism of nonex-

occurs in a system coupled to a non-Gaussian noise sourgsnsjve statistical mechanider the “superstatistics” con-
introduced by a nonequ!hbrated thermal bath. Another exterCept’ in general, Ref35]) offers an intriguing interpretation
nal stochastic process is assumed to be responsible for dif non-Gibssian ensembles that can model nonequilibrated
chotomous quctuatlon§ of the p_otenUgI barner' which hasyains. Especially, for nonquilibrium systems composed of
been modeled by the linear function with a varying slope. regions that exhibit spatiotemporal fluctuations of an inten-
In comparison to the Gaussian cg28], when the RA  gjve quantity(such as pressure, chemical potential, inverse
phenomenon has been observed for all barrier sethps ( temperature, or the energy dissipation fg8]) generalized
=*8,H,=8,H =0, H,=8, H =4) analyzed in this  statistics may emerge in consequence of a statistical subor-
study, non-Gaussian additive stable noises produce resonajhation of the intensive variable to those fluctuations.
activation observable only for the..=+8 case. Resulting  The situation in which resulting probability distributions
MFPTs are significantly smaller than those obtained for theyre not Gaussian are frequent in various physical situations.
Gaussian source of fluctuations. The effect is due to highefpe phenomena of special interest are random walks that

probabilities of the extreme eventiarge fluctuationp al- may lead to Ley distributions[5] and hence provide a pos-

case, a typical asymptotic behavior of the MFPT has been There are several candidates for such a noise origin to be
recovered for large and small frequencies of the dichotomougken into account. Obviously, all noise sources need to be
noise: for smalty MFPT tends to the average MFPTs for the infinite to allow, with a nonzero probability, infinite fluctua-
both barrier configurations, while for large it becomes  tions. Among possible models of chaotic nonequilibrium
equal to the MFPT over the average potential barriehaths perhaps the most natural is a model of the fluidlike

[23,25,26. . S ~ bath[37] abruptly perturbed with a local heating to a very
Thesg obs_ervgho_ns have sev_eral |mpl|c§1t|ons in relatiomigh temperature. Gradual spreading of energy progresses
to chemical kinetics in conformationally varying mefi@8—  yntil a new equilibrium state is reached and for some finite

40] where flipping barriers separating reactants’ and prodperiods of time, the probing system that experiences local
ucts’ basins may be due to a dynamic isomerization of thehange of the bath temperature will be governed by non-
activated complex. The effects of fluctuations in force orgoltzmann statistic§32,37. This and similar approaches
potential on the diffusive process have been also extensivelyajidate then use of the lg-type statistics for description of
studied in the context of motor proteifdl]. Under typical  systems functioning far from equilibrium or subject to non-
conditions, i.e., with a Gaussian additive thermal noise angquilibrated baths. As known from other similar studi2g],

with a flipping barrier height, the RA phenomenon is regis-the Levy-type structure of the noise imposed on a double-
tered in all those realms as a maximal flux of particleS or aNe” potentia| can affect profound|y noise induced ]ump|ng
maximum reaction rate. In contrary to this finding, the analohetween metastable states and result in stationary PDF devi-

gous systems influenced by the presence of non-Gaussigfiing severely from the usual Gibbs distribution.
additive noises exhibit RA only for potentials switching be-

tween the k_)arr?er and the welFig. 2, Iqwer p_a_ne)l Other- _ ACKNOWLEDGMENTS
wise, the kinetics seems to be fairly insensitive to the flip-
ping rate of an erecting barrigiFig. 2, middle panel or Authors acknowledge stimulating and inspiring discus-

becomes slowed dow(Fig. 2, upper panglwhen the fre- sions with P. F. Gra.
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